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ABSTRACT

In dynamic environments with frequent content updates, &ve r

quire online full-text search that scales to large dateectitbns and
achieves low search latency. Several recent methods thpbgu
fast incremental indexing of documents typically keep akdnul-
tiple partial index structures that they continuously updes new
documents are added. However, spreading indexing infasmat
across multiple locations on disk tends to considerablyedese the
search responsiveness of the system. In the present paptakey
a fresh look at the problem of online full-text search witmsial-
eration of the architectural features of modern systemsecBee

Range Flush is a greedy method that we introduce to manage th

index in the system by using fixed-size blocks to organizedtta
on disk and dynamically keep low the cost of data transfevéeh
memory and disk. As we experimentally demonstrate with tioe P
teus prototype implementation that we developed, we retrie-
dexing information at latency that matches the lowest aehidy
existing methods. Additionally, we reduce the total buitglicost
by 30% in comparison to methods with similar retrieval time.

Categories and Subject Descriptors
E.5 [Files]: Organization/Structure; H.3.2rfformation Storagel]:

equally important to the search support in digital librarénd the
web [14,24]. Modern commercial search engines rebuild tiiese
index periodically by processing tens of petabytes of datxye
day with the assistance of customized systems infrasteicod
data processing tools [8]. They operate sufficiently wetl thee
web because they track changes that occur relatively inémeity
and would be almost infeasible to follow continuously dudhieir
enormous volume. On the other hand, search environmeritsetha
quire immediate visibility of newly added documents areeotly
actively investigated with respect to their index orgatima and
their update algorithms [4, 6,11, 14, 24]. The main chakeigto
eachieve fast update and search operation at low cost.

Inverted fileis an index that for each term stores a list of point-
ers to all the documents that contain the term. Each poioter t
document is usually callegostingand each list of postings for a
particular term is callegosting list Thelexiconof the inverted file
associates every term that appeared in the dataset to fingbist.
We assume that a posting specifies the exact position of the do
ment where the term occurs and consider posting lists ofrdeat:
identifiers sorted in increasing order. We focus on datdbetsal-
low insertions of new documents over time and examine mathod
to maintain inverted files efficiently on secondary storajelex
maintenance for the more general case of document updaties an

File Organization; H.3.3pformation Search and Retrieval]: Search deletions is an interesting problem on its own that we woait-c

Process; H.3.49ystems and Softwarg Performance evaluation
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1. INTRODUCTION

sider further here [11].

In order to index static datasets, one needs to parse dotsimen
offline into partial indexes and periodically flush the accileted
postings from memory to disk. Eventually, external sorttag be
used to merge the multiple index files into a single file thaidhes
queries for the entire dataset [26]. Online approache®giesally
merge the partial indexes on disk to support search opasation-
currently with index updates. There is a typical trade-@ffieen
index building time and search time. Ideally, each term cdear
should involve a number of steps that only depends on the num-
ber of postings rather than the total index size. Howevastieg
methods either take polynomial time to build an index of ¢ant

As the cost of storage space drops and the amount of accumu-gearch time or require logarithmic search time for lineatding

lated digital content grows, automated full-text searatfife sys-
tems, mail services and electronic commerce environmeases
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time.

Unlike the latest methods that keep the merging cost lowutiio
balanced-tree schemes [6, 11, 15], in the present paper lve/ fo
the more straightforward approach of maintaining the pgstion
disk in fixed-size blocks. Each fixed-size block may contaia t
postings of a single frequent term or the posting lists ofxicte
graphically ordered subset of several infrequent termginguhe
index construction, we dynamically determine the subseé¢hs
whose postings gathered in main memory can be more effigientl
flushed to disk. Thus, at each flush we only update a small numbe
of terms on disk at cost that remains relatively constaninduthe



Contiguity of Inverted File

Number of Runs on Disk

0 — T T T T
0 20 40 60 80
Memory Flush

Figure 1: Several recent systems maintain the inverted filero
disk across multiple partial indexes (runs) [6,16]. When tley
retrieve the postings of a term, they need to access multipteins
of the inverted file. The x axis refers to the time instances at
which memory contents are flushed to disk (Based on Wumpus
with Hybrid Logarithmic Merge over the 426GB GOV2 [6].)

index building. Depending on the frequency of a searchem,ter
its postings on disk either (i) are stored contiguously at pba
single block, or (ii) are exclusively occupying a collectiof mul-
tiple blocks. As we show experimentally, we achieve seandi c
that only depends on the number of retrieved postings, ahekin
building time that is substantially lower than that of methavith
similar retrieval time.

In Figure 1, we depict the number of partial indexes mairdin
by a linear building approach during the processing of adsteth
text collection. We notice that there are phases during tiildibg

2. RELATED WORK

Published literature on text retrieval separates offlimeincon-
struction from online index maintenance [22, 26]. In conngzar
to online maintenance, offline index construction is simpled
more efficient because it does not handle document queriggsin
completion. In particular, web search research mainly $eduon
offline index construction, giving also emphasis on theteselas-
sues of how to crawl the web to gather documents and expldit we
hyperlinking information for ranking purposes [1, 8].

During index building, a system typically parses new docuisie
into posting lists of terms that temporarily maintains inimaem-
ory for improved efficiency [7]. When memory gets full, thessym
flushes the postings lists to disk. Early work recognizes a;ym
requirement in the above process the contiguous storageskn d
of the postings belonging to each term [25]. Storage coitjigu
may improve access efficiency for both query processing raheki
maintenance, but introduces the need for complex dynamiags
management and frequent or bulky relocations of postinderA
natively, the disk access efficiency may be improved by tanti
ing the terms into lexicographic ranges and keeping theinmsst
of different terms from the same range in correspondindfeint
neighboring blocks on disk [12].

In-place method$uild each posting list incrementally as new
documents are processed. The need for contiguity makesdsne
sary to relocate the lists when they run out of empty spaceeit t
end [17,18]. One can amortize the cost of relocation by fweal
cating list space for future appends using various crit@®. If
the system keeps the posting lists non-contiguously on thisk it
avoids relocations but may need multiple seeks during qpesy
cessing to retrieve a posting list. Theerge-based methodserge
postings from memory and disk into a single file on disk. The la
est related methods amortize the cost by permitting thetiorea
of multiple inverted files on disk and merging them accordiog

process where we may need as many as 7 disk accesses teeretrievSPecific patterns [15, 16]. Even though in-place index nesiabce

the posting list of a term regardless of the storage spaceiipgies.

A typical SATA disk has seek time 8ms, average rotation katen
4ms and nominal transfer time 70 MB/s [23]. Then, in a 12mtim
period of the head positioning overhead, the disk can regulese
tially about 800 KB. Since the posting list for the majoritf/the
terms occupies up to a few megabytes, the access overhesackoeq
to read multiple runs may exceed the corresponding usefuster
time. Ildeally, we should retrieve each posting list in a Erdjsk
access, without substantial increase of the index builting.

The main contributions of the paper include: (i) grouping of
infrequent terms into lexicographic ranges, (ii) partiasfiing of
both frequent and infrequent terms to disk, (iii) dynamitabae
between frequent and infrequent terms flushed to disk, (@Qks

has linear asymptotic disk cost that is lower than the patyiab

cost of merge-based methods, merge-based methods aré- exper
mentally shown to use sequential disk transfers and owtperin-
place methods [17].

The problem of merging postings lists is very similar to exéd
sorting. We callrun a collection of posting lists lexicographically
sorted by term. One way to specify the sequence of mergips ste
is to use atree representatiofl3]. The leaves of the tree cor-
respond to the initial runs, while their internal nodes retethe
runs that result from the merging of their descendants.i®ueve-
search in database systems has identified the optimizdtjentve
of merging to perform as few merge steps and move as few record
as possible [9]. Known heuristics always merge the smatbast-

based storage management of all terms on disk. To the best ofing runs or mostly use maximal fan-in. One approach preyous

our knowledge this is the first time that a method simultasgou
combines the above features. Previous methods distriléeith-
frequent terms randomly across different blocks [25] unlg®y
managed them individually [3, 27], only flushed partially tfre-
quent terms from memory to disk [4,5], and obtained limitedd>
fits from block-based storage management because they amly c
sidered small blocks of a few kilobytes [3, 25].

In Section 2 we summarize the previous related work and cat-

egorize existing approaches for managing inverted filemenlin
Section 3 we introduce our index maintenance method andidesc
the Proteus prototype implementation, while in Section 4gwme
over the experimentation environment that we used. In Ge&i
we present the results from experiments with alternatigéesy pa-
rameters and comparisons with other systems and in Sectia 6
outline our conclusions.

mentioned but not verified only merges or concatenatesidract
of runs [10]. In the present paper we introduce the concetsrof
range to apply the above idea for first time, and examine itefite
in the storage management of inverted files.

Hybrid methodsseparate terms into short and long. One early
approach hashed short terms accumulated in memory into-fixed
size disk regions called buckets. If a bucket filled up, thehoe
categorized the term with the most postings as long and kepti
separate disk region from that point on [25]. In several mebg-
brid methods, the systems use a merge-based approach $hrattie
terms and in-place appends for the long ones [6]. They tet e
term as short or long depending on the number of postings#vat
shown up in total until the current moment, or currently jgipate
in the merging process. The Wumpus prototype implememtatio
of the above methods weakens the storage contiguity regaire



Index Maintenance Method Building Cost Search Cost References
No Merge O(N) O(N/M) [6,12,15,25]
Immediate Merge O(N2/M) 0(1) [4,6,7,15]
Logarithmic Merge (or Geometric Partitionind) © (N log(N/M)) | O(log(N/M)) [6,15]
Geometric Partitioning with< p partitions O(N (N/M)l/p) 0(1) [15]
Hybrid Immediate Merge O(NT833/0M) 0(1) [4,6]
Hybrid Logarithmic Merge O(N) O(log(N/M)) [6]

Table 1: The table summarizes the asymptotic cost (in I/O opations) required to build and search inverted files for online full-text
search. The rightmost column contains references to publiged literature where the corresponding methods appeared.N is the
number of indexed postings andM is the amount of main memory used for postings gathering. Idally, we would prefer to have a
method that offers constant search timeO(1) for linear building cost ©(N), but none of the above methods achieves that. On the
other hand, experimental research has shown that buildingitne may also depend on storage system parameters not alwaysiuded

in asymptotic cost estimates [4, 17].

by keeping the postings of each long term into multiple défe
locations of a file that consists of 64KB blocks [4, 6]. We exte
this approach by storing the postings of each long term adange
blocks (with default size 8MB) and also lexicographicallpup-

ing the short terms into ranges that fit in large blocks. Sgbsetly,

we merge to disk those ranges with a substantial number of acc
mulated postings in memory. Thus we reduce the data transfer

of memory space every time memory gets full by selectivelstfiu

ing short and long terms based on their relative size in mgmor
Recent research also considers the problem of indexingein th

context of document deletions from the indexed documerjtidét

In the present paper, we radically simplify online index mei

nance by keeping the posting lists on fixed-size blocks rdtran

contiguous files. Other previous work has examined the g#ora

between memory and disk to the cases where we estimate them asf posting lists onto collections of blocks with size up tok®&}

efficient.

In Table 1, we summarize the asymptotic cost of known meth-
ods to manage inverted files in secondary storage. The NoeéVerg
method flushes its postings to a new run on disk without angmer
ing, every time memory gets full. Although impractical t@opess
queries, No Merge provides a baseline for the minimum péssib
building time. The Immediate Merge method repeatedly netige
postings in memory with the entire inverted file on disk. TheoG
metric Partitioning or Logarithmic Merge method uses a ihedal-
tree pattern to merge the postings of memory and the runssén di
The Geometric Partitioning method witld p partitions adjusts
continuously the fanout of the merging tree to keep the nurobe
runs on disk at most. In the particular case of = 2, Geometric
Partitioning with< p is also known in the literature as Square Root
Merge method [6].

In the Hybrid versions of the above, the system partitiores th
index into in-place and merge-based parts [6]. During nmgygit
moves to the in-place part of the index the postings of tetms t
accumulated more than T (typicallp)®) postings in memory and
the merge-based part of the index. In our experiments, wehese
above variation of hybrid policies as supported in the tafésm-
pus prototype. It reduces the index building time but mayease
the search time of the long terms due to posting retrievata fsoth
the in-place and the merge-based part. Another variatidnylofid
methods also exists that categorizes terms into short grdooord-
ing to the total postings accumulated in the system ratlzer tiose
only in memory and the merge-based part [4,5]. This varaitie
creases the building time, but keeps the postings of eaah iter
only one of the merge-based and in-place parts.

From the asymptotic search cost that is not constant, wezeeal
that several recent methods tend to relax the requiremerofo
tiguity of the postings lists. For example, several effitiererge-

based methods maintain more than one index files on disk. Sim-

ilarly, an in-place method stores on disk the postings ofra t@
multiple groups of a minimum size rather than a single camttics
collection [6]. A recent hybrid method uspartial flushingto de-

lay merges of short terms by only flushing the long terms wittus
pied memory that exceeds an automatically adjusted thiek§hjo
When transfer efficiency drops, then all long and short pgstare
flushed from memory to disk. Instead, we free a minimum amount

[3,25,27]. Those studies were done with architecturalragsions

of the previous decade and were rather lukewarm about the ben
efits of block-based storage management due to overheadsdel
to query processing and unused storage space. In the ppsent
per, we quantitatively explore the relevance of block-basterage
management to the problem under study with a prototype imple
mentation over modern systems and datasets.

3. THE PROTEUS ARCHITECTURE

Even though the index building process involves the pareing
documents to extract the postings, in the present paper oues fo
our interest on the management of the inverted file. In our de-
sign, we set two objectives: (i) retrieve posting lists astctat
only depends on their length and not the size of the index, and
(i) build the inverted file with minimal disk transfer coshder
the above constraint. We consider these objectives censigtith
the requirements of a search engine designed for dynamimanv
ments, where new documents are added frequently and ugperstex
to search them shortly after their addition. In order to aehiour
goal, we make the following design decisions: (i) Categoterms
into short or long based on the total space of their postirdk.
Manage short terms in lexicographic ranges and long terutis in
vidually. (iii) Flush postings lists to disk selectively laynount of
postings in memory. (iv) Allocate disk storage space in fisizt
blocks.

As we add new documents to a collection, we accumulate term
postings in the available memory space and eventuallyfeatiem
to disk. We use a lexicon to keep track of the individual teemd
associate them with postings lists in memory or on disk. Tigho
experimentation we verified that in-place management ofsevith
few postings bears significant overhead for appending toetisk.
Similarly, merge-based management of terms with lots ofipgs
incurs significant cost for merging them to disk. Thus, wesider
a termshortor long, respectively, depending on whether its current
total posting space is less or exceeds the preconfigureensyst-
rameterterm thresholdr’;. For the sake of conciseness, we use the
name long or short not only for terms but also for their cqroesl-
ing postings, posting lists or ranges.

Initially all terms are short. When the total size of possirffgr



Symbol | Name Description Default Value
By, Posting Block Fixed size of each block storing postings on disk 8MB

My Posting Memory | Total buffer space for accumulating postings in memory | 1GB

My Flushed Memory | Bytes flushed to disk every time the posting memory gets fulOMB

Fp Preference Factof Factor of flushing preference for long or short terms 3

Ty Term Threshold | Posting list size that differentiates short terms fromlong | 1MB

Table 2: Summary of parameters used in the proposed architeare.

a term exceeds the threshdld, then we categorize the term as
long. We anticipate that long terms are relatively frequart will

Algorithm 1 Flush postings from memory to disk.
1: Algorithm: SelectiveRangeFlush

continue to accumulate postings in memory. When we remove a 2: Input: index in memory & on disk

long term from memory, we simply append its postings to the ex
isting list on disk using the in-place approach. Since iitlial
short terms are infrequent, we group them into lexicogreglyi
ordered ranges. We move their postings to disk by merging ithe
memory with older postings on disk.

We store the postings on disk using fixed-size blocks of Bize
that we callposting blocks The postings of a long term exclu-
sively occupy one or multiple blocks that we allocate dyreaty
as needed. A range of short terms takes its own block on disk to
store the postings lists lexicographically ordered by téifhen the
posting block of a short range gets full, we split the ranges
two postings blocks. Similarly, if the posting block of a ¢pterm
overflows, we allocate a new posting block and move the owerflo
postings there. When a term changes category from shorhtp lo
we remove all its postings from the range and store them into a
new exclusive block. From that point on, we no longer keep any
postings of the long term in the corresponding short rangegte-
viously contained that term.

Finally, we maintain a partial index on top of each long post-
ing list. This allows us to only retrieve the postings for cfie
ranges of documents. For example, this is needed in thévediat

common case that we answer conjunction queries and merge the

posting lists of the most frequent terms against those ofrthst
infrequent. The answer is the intersection of the documtats
contain the terms of the query. According to our design, th&-p
ings of a short term are contiguously stored as part of onénmps
block on disk. When we retrieve the posting list, we only naed
single disk transfer. Instead, the postings of a long ternegsly
occupy multiple posting blocks and require multiple tramsto get
them in memory. Overall, the retrieval time of a postingibshde-
pendent of the total size of the index. However, this argurdens
not include the potential increase in average seek timethgtoc-
cur over a large index with posting blocks spread across ragegs
of the disk space.

3.1 Selective Range Flush

We callposting memorthe space of capacity/,, that we reserve
in main memory to temporarily accumulate the postings fr@w n
documents. When posting memory gets full, we need someypolic
to determine which particular postings to transfer to disét make
space for new ones [4]. In order to minimize the total indedsu
ing time, we need to minimize the total number of disk operati
and maximize their efficiency. In fact, the overall buildiogst de-
pends not only on the efficiency of each individual transfent
memory to disk but also on the total amount of data broughhfro
disk to memory, when we apply the merge-based method. Fgr lon
postings, we use the in-place method and prefer to have enly f
large appends to disk. For short postings, we apply the nexged
method, and want to minimize the number and maximize thedsdize
the transfers to disk. Thus, we group short terms into leyiaphic
ranges and keep their postings in memory as long as possible t

. Output: updated index in memory & on disk
4 Sort long terms/short ranges by memory space of postings
5: while (flushed memory space M) do

6:  {Get max list size of long terms and short ranges in memory}
. Tiong = long term of max memory space
. Rshort := short range of max memory space

9:  {Compare terms/ranges by memory space of postings}

10: if (SizeofRshore)/sizeofliong) < Fp)then

11: {Append long postings to on-disk index}

12: Remove the postings @, from memory

13: Allocate new posting blocks as needed

14: Append memory postings to the posting blocks
15:  else

16: {Merge short postings to on-disk index}

17: Remove the postings @@, .-+ from memory
18: Merge postings into posting block &}, +

19: if (posting block overflown)hen

20: {Split range of short terms}

21: Allocate new posting blocks as needed

Split Rsno-+ €qually across posting blocks

23: end if
24:  endif
25: end while

avoid the repetitive disk reads and writes involved duriregges.
Short-term flushing seems similar to the page replacemebt pr
lem in the sense that good candidates for flushing are thogesa
which won't get new postings in the future. One main differen
from paging is that we accumulate new postings in memoryawith
needing the older postings until we flush them to disk. Additi
ally, we need to balance flushes of short and long terms aicecprd
to their cost. Long postings incur an one-time cost for flnghi
while short ranges require repetitive reads from disk keefarsh-
ing new postings. Furthermore, writes occur asynchroyoast
may incur delays during subsequent reads - of new docunfents,
example, that we process next - due to the need for cleanityg di
buffers from the page cache [2].

For this unique problem of disk transfer scheduling, we came
up with a new policy calle®elective Range FlushVe show the
pseudocode of the method in Algorithm 1. Every time our pasti
buffer gets full, we sort the posting lists according to thace they
occupy in memory (Line 4). We compare the byte size of theelstrg
long list against the byte size of the largest short rangeemory
(Line 10). We pick for flushing next the largest long list, esd it
is F, times smaller than the largest short range (Lines 11-14). In
the latter case we flush the short range instead (Lines 16\V28)
repeat the above process until we flush to didlkshed Memory
(My) bytes of postings. Our approach generalizes in severas way
the partial flushing introduced previously [4]. We avoidffieent
flushes of long terms by only flushing/; bytes instead of the en-
tire posting memory. In addition to long terms, we seledyidieish
short ranges, when their size is sufficiently large.

The constant, is a fixed configuration parameter that we call
preference factor Its choice reflects our preference for the one-
time flushing cost of a long list rather than the repetitiangfers
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Figure 2: (a). The prototype implementation ofProteus. (b) We maintain the hashtable in memory to keep track of the jstings that
we have not flushed yet to disk. (c) Each entry of the termtableorresponds to a long term and points to the blocklist that keps
track of the associated posting blocks on disk. (d). Each ent of the rangetable corresponds to a range of short terms, ashpoints to
the search bucket that serves as partial index of the corregmding posting block.

between memory and disk of a short range. We postpone the flush ument identifiers and the corresponding locations of thmdeare

ing of the largest short range until the size of the largeyy list be-
comesF;, times smaller. Then the flushing overhead of the long list
takes too much for the amount of data flushed. At the same tiene w
prefer to keep the short postings in memory and avoid theiging
into disk. The parametef, may depend on the performance char-
acteristics of the system architecture, such as the heagment
overhead, the sequential throughput of the disk, and thistita

of the indexed document collection (e.g. the frequency eténms
across the different documents). In our experiments, svadlies
betweenF,, = 2 and F},, = 3 achieved the lowest building time for
the dataset that we used.

Our algorithm behaves greedily because it only considegs th
space that a long term or short range currently occupies mane
We use the parametét, to approximate the cost of flushing a short
range relative to a long term. Similarly, we use the occupieate
of postings in the indexed dataset to categorize the terftashort
or long. We experimented extensively with alternative apphes
that estimate the posting flushing throughput or choose d¢oesg
sively flush terms up to a minimum size of posting lists. Tmede
approach ofSelective Range Flugb flush few tens of megabytes
from the largest lists in memory gave the best performaneeadiv

As a baseline for search efficiency, we provide a version ef th
SRF algorithm with the long lists contiguously stored orkdiEach
long list starts as a single block with the default size. Aes size
of the list exceeds the current capacity of the block, welaeal
cate a block with twice the size and relocate the postinghef t
list to the new block. In our figures, we depict this implemen-
tation as SRF/CNT-Proteus in order to separate it from tlgg-or
nal SRF/FRG-Proteus version, where each long list is fraete
across multiple blocks of the default size.

3.2 Prototype Implementation

We built a prototype implementation of our own inverted-file
management in thBroteusarchitecture (Figure 2(a)). We retained
the parsing and search components of the open-sourcerzetiach
engine (version 0.9.3) [20]. The focused and modular desfgn
Zettair made it a good choice for our needs. In our study, wialgna
investigate the 1/0 aspects of search and make no engigesffort
to optimize processing-related tasks beyond reasonableesh In
particular, we use the standard memory managemefibaf al-
though a customization to the needs of Selective Range Etusgt
reduce the related processing cost.

We maintain in memory a hash table that we dakhtable
where we store the posting lists that we extract from thegghars
documents (Fig. 2(b)). In the posting list of each term, the-d

sorted in ascending order. Then, each list is stored as #alini
identifier or position and a list of gaps compressed usinglibe-
length byte-aligned encoding [26]. Overall, compressietuces
considerably the space requirements of postings in menmaiypa
disk.

We categorize the terms inghort or long according to the total
space of their postings in the system. We use a sorted agiisglc
termtable to keep track of the posting blocks associated with each
long term (Figure 2(c)). We use binary search to look foripatar
terms in the termtable. Organization of the termtable agiay af
pointers to descriptors makes relatively inexpensive Hifirsg of
existing terms and the insertion of new ones at arbitrarytipos.
Each descriptor contains the term name, the size of thenpssti
in memory, a pointer to the last block, the amount of free epac
at the last block on disk, and a linked list of nodes that wé cal
blocklist Each node of the blocklist contains a pointer to a posting
block on disk, and also the first and last document identifédd h
by the corresponding posting block. This is useful inforigrafor
the case that we need to retrieve only a subset of the podtingsh
that contain specific document identifiers.

In memory, we keep for the short terms a sorted array that we
call rangetable(Figure 2(d)). Each rangetable entry corresponds to
a range of terms whose postings are stored in a single blde&. T
entry contains the space size of the postings, the names @ifsh
and last term in the range, and also a pointer to the block lzad t
amount of the free space at this block. In a partial index weat
call search bucketwe maintain the name and location of the term
that occurs every 128KB along each posting block. The search
bucket allows us to approximately retrieve only the reqiipart
of the posting block that may contain a term. From our experi-
ence, any more detailed index to each posting block mayasere
significantly the maintenance overhead of the rangetable.

Initially, the termtable is empty and the rangetable cargtai sin-
gle entry for all terms. When the posting memory fills up, we so
by posting space the short and long ranges currently in meride
pick the actual term or range that we flush next based on tleeSel
tive Range Flush algorithm. For each range we maintain a&tink
list of all the associated terms that have non-empty podisig)in
memory. Before we flush a range, we retrieve its postingadire
stored on disk and merge them with those accumulated in nyemor
If the range that emerges from merging exceeds the capdcity o
posting block, we split the range into multiple half-filletbbks.
We flush a long term by simply appending its postings to itt las
block on disk. If we exceed the capacity of the last postiragkl
we allocate more blocks on disk and completely fill them upeexc
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Figure 3: (a) We measure the average retrieval time for the tems with total postings up to 1MB. HIM has 10% lower time than
SRF/CNT and 14% lower time than SRF/FRG. HSM appears similarto HIM here, because it happens to have single-run merge-
based index at the end of GOV2. HLM requires about four times nore time than the other policies due to the four runs of the
merge-based index. (b) We measure the average retrieval tierfor terms with postings more than 1MB. In comparison to the ¢her
methods, SRF/CNT requires about 3-3.7 times and SRF/FRG 28.2 times lower retrieval time. (c) We show the number of tems
across 5ms intervals of posting retrieval time. The peaks #RF/CNT and SRF/FRG are slightly to the right of HIM, while th e peak
of HLM lies separately further right. In order to make more vi sible the differences, we only include retrieval times up tds.

for the last one. After the flush, we update the tables in mgrwor
accurately reflect the postings currently available in mgmo

4. EXPERIMENTATION ENVIRONMENT

For our experiments we used servers running the Debian-distr
bution of Linux kernel version 2.6.18. Each server is eqgeipwith
one quad-core x86 2.33GHz processor, 3GB RAM, one linked gi-
gabit ethernet port, and two 7200RPM SATA disks of 500GB each
The disk vendors specify buffer size 16MB, seek time 8.9md, a
sustained transfer rate 72MB/s. We store the documentctiolte
and the generated index on the two disks separately. Wescces
the disks through the default filesystem of Linux (ext3). #ié
reported numbers correspond to system operation withgiblgi
swapping activity.

In our experiments we use the full 426 GB GOV2 standard datase
from the TREC Terabyte track [19]. Unless otherwise spatifie
we set the parameter values of Protéys= 8M B, M, = 1GB,

My = 20MB, F, = 3andT; = 1M B. In the case of GOV2,
the hashtable that we maintain in main memory occupies 4MB,
the termtable and rangetable together 0.5MB, the block disthe
long terms 0.12MB, and the range buckets of the short terms re
serve 36.5MB. In total, our auxiliary structures in memaeyuire
less than 50MB.

In order to keep our comparative measurements consistent, w
do all the related experiments on a single server and obsegle
gible (< 1%) measurement variations across different repetitibns o
the same experiment on one machine. Proteus generatessizdex
of 70GB which is comparable to the 64GB created by the Wum-
pus system [6]. Even though the two systems manage the storag
space differently, we verified that the posting list of theneaerm
occupies space within a few percent of each other acrosswvihe t
systems.

5. PERFORMANCE EVALUATION

We compare the index building and term retrieval behavior of
Proteus against alternative configurations of Wumpus. Syently,
we examine the effects of the system configuration paraséber
the performance of the Proteus prototype. We consider &esobs
index maintenance methods that are known to cover a wideerang
of tradeoffs between building and search efficiency (Taplevie
experimented with the above methods as implemented in the-Wu
pus system with activated partial flushing and automatesbtioid
adjustment [4, 6]. The original Zettair implementationltsia lex-
icon for term searches at the end of the index building; trakes
it offline and we don’t examine it any further here. In Proteus
maintain a lexicon that allows us to retrieve all the postiists
from memory and disk during the building process.

To keep Wumpus and Proteus functionally comparable, we ac-
tivate full stemming across both systems when we compara the
with each other (Porter’s option [21]). Full stemming reesiterms
to their root form by stripping suffixes. Thus, it retrievedevant
documents with words that do not match exactly those sedrche
Full stemming makes the document parsing to take longer, time
but reduces the index size and improves query processireglspe
In Proteus we use an unoptimized version of Porter’s algaorias
implemented in Zettair. This makes the reported parsing tih
the Proteus index building a pessimistic estimate that neafub
ther improved with sufficient engineering effort. When waenxne
the sensitivity of Proteus to the configuration parameteesyse a
less aggressive option calldéight stemmingnstead, which is the
default setting in the original Zettair parsing implemeiatia.



Selective Range Flush/FRG - Proteus Hybrid Logarithmic Merge - Wumpus
Stemmed | Short Blks Long #BIks | Time | Short | #Runs| Long #Segs | Time
Term Bytes | (8MB) Bytes | (8MB) ms Bytes Bytes | (64KB) | ms
anim 9] 9] 4723752 1 99 | 541211 3 4285528 89 238
colmid 7 1 0 0 21 1 4 0 0 89
gtefcu 9] 9] 9] 9] 30 0 4 0 9] 113
wallet 53314 1 0 0 14 17226 4 0 0 91
floor 0 0 2940503 1 74 | 955182 4 1115022 21 252
spruce 185226 1 0 0 31 93818 4 0 0 99
yahoomap| 195 1 0 0 26 29 4 0 0 84
degener | 126185 1 9] 9] 19 52819 4 0 9] 74
meaning | 778171 1 0 0 26 | 242044 4 0 0 99
wage 9] 9] 3515692 1 87 | 583295 3 2618283 53 204

Table 3: Selective Range Flush/FRG of Proteus stores the oy list of each short term contiguously in part of a postingblock; it

exclusively occupies multiple posting blocks for the postig list of each long term. Hybrid Logarithmic Merge in Wumpus spreads
a posting list across several runs of the merge-based subied and several segments of the in-place subindex. In compadn to
Wumpus, Proteus consistently achieves a decrease of sevdegtors in the retrieval time of the posting lists. This is asample from
the indexes created for the GOV2 collection by Proteus and Wmpus, respectively.

5.1 Reading a Posting List Instead, we found that Wumpus keeps the merge-based index of

We measure the time to retrieve the posting list of diffetenique ~ HIM in a smaller region of 10GB. Finally, HLM requires about
terms in the index of the entire GOV2 dataset. In our expentsie  four times longer time than the other policies, due to the-fon
we use the terms (25673 short and 5121 long terms on averageMerge-based index. The discrepancy would be even highéein t
across the policies) contained in the Efficiency Topics gt case of a six-run merge-based index (as shown in Figure 1).
of the TREC 2005 Terabyte Track [19]. We ensure that our mea- In Figure 3(b), we measured the retrieval time for terms with
surements include the delay of the disk transfers by flustiieg ~ POStings of more than 1IMB. We observe that SRF requiresvetri
memory cache before we retrieve the posting list of a term. time about two to three times lower in comparison to the oplodr

In Sections 2 and 3, we already explained the policies that we Ci€s. We attribute this difference to the mechanism of SRFtae
examine. We note that SRF/CNT keeps the postings of each termdefault size of 8MB posting block in Proteus. In comparison t
contiguously in either the in-place or the merge-based gfattte short terms, the retrieval time of long terms may be lessialuc
index but not both. SRF/FRG is similar to SRF/CNT with theyonl ~ depending on the type of the search operator. For examptenin
difference that it fragments the postings of the long termress ~ junction queries only a subset of the posting list needs trbeght
multiple posting blocks. Hybrid Immediate Merge (HIM) haseo ~ t0 memory. We also note that SRF/CNT achieves 13% lower re-
merge-based run and one in-place run. It keeps the postirgs trieval time in comparison to SRF/FRG. We can explain ths di
short term in the merge-based run, and the postings of each lo crepancy if we consider the contiguity of the postings in SRNT
term in both the runs. Hybrid Square Root Merge (HSM) has one that reduces disk access overheads during the retrievalafga
in-place run and number of merge-based runs that variesseetw ~ €rm. o )
one and two depending on the index size. At the end of GOv2  In Figure 3(c), we group the terms into intervals accordiog t
processing, HSM ends up having one merge-based run. Thaus, th their posting retrieval time. We choose the width of the riveé
postings of each short term are stored in one run, and thingest ~ €gual to 5Sms. Thus, the y axis shows the number of terms whose
of each long term in up to two runs. Hybrid Logarithmic Merge retrieval time lies within the same interval. We see that Hiks
(HLM) has one in-place run and number of merge-based runs tha itS peak just one interval left of SRF. HLM varies its runs fret
logarithmically depends on the index size. During the pssirey merge-based part between 1 and 6. In our experiments HLMiende
of GOV2, the number of merge-based runs varies between @he an UP With four runs resulting into histogram curve distinotly the
six, and at the end it becomes four. Thus in our measureménts o fight of the other policies. HSM has merge-based index wité o
HLM, each short term has postings in four runs, while eaclylon un at the end of GQVZ, therefore it has retrieval time smm
term has postings in five runs. We note that the in-place run of HIM. We also examined the case (not shown) of HSM with two-
the Wumpus prototype consists of 64KB segments. As a result, 'un merge-based index that is created if we stop the prowpséi
the postings of each long term in Wumpus are fragmented sicros GOV2 a few gigabytes short of the entire dataset. Then, thescu
multiple segments which are not contiguously stored. of HSM lies halfway between SRF and HLM. _

In Figure 3(a) we measure the average retrieval time forgerm [N Table 3, we can see the exact number of runs accessed during
with postings up to 1MB in the system. We notice that HIM aghge & search with the HLM and SRF/FRG policies. For example, HLM
the lowest time. HSM is similar to HIM because it happens teeha ~ Maintains short postings for teramim across three runs and long
single-run merge-based index at the end of GOV2. Howeveh wi  POStings across 89 segments of 64KB. Instead, SRF/FRGozateg
experiments that we also did (not shown here) for the cass@ft  fizesanimas long term and keeps all its postings in a single block.
run merge-based index, HSM requires about 50% more time for As a result, the total retrieval time is 99ms for SRG/FRG @oli
terms with total postings up to 1MB. Essentially, the sedrehav- and_ 238n_15 for the HLM. Qverall, HIM and SRF_achleve the lowest
ior of HSM varies depending on the status of the merging pece  retrieval time for posting lists of short terms, while HSMiaiLM
at which we do the experiment. SRF/CNT is 10% higher than HIM May take longer due to the multiple runs that they possiblinma
and SRF/FRG 13.5% higher. We attribute this difference betw tain. When we retrieve the list of a short term we need to acals
SRF and HIM to seek overheads that arise because we spread th&h€ runs in the merged-based part as a result of the manrn¢héna

postings of the short terms across a disk region of 70GB index index is constructed. This is even needed in the case tha the
no occurrence of the searched term in the indexed dataset.
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Figure 4: We break down the index building time into docu-
ment parsing and postings flushing parts across different mia-
tenance policies implemented in Wumpus and Proteus. Parsin
includes the time to clean dirty pages of the index as needed t
free buffer space for newly read documents. For the SRF algo-
rithm over Proteus we depict the cases of fragmented long lis
(SRF/CNT) and contiguous long lists (SRF/FRG). We observe
that SRF/FRG takes 30% less time to build than HIM.

5.2 Building the Inverted File

In Figure 4, we break down the building time into tRarsing
part to read and parse the dataset into postings, arftksaingto
gather and transfer the postings to disk. The differentjEsicover
a wide range of building times between 325 min for No Merge
and 730 min for HIM. In comparison to HIM, the total building
time is 30% lower for SRF/FRG and 28% for SRF/CNT. We also
notice that SRF only needs 14 additional minutes of building
for postings relocations that keep the long lists contiguom disk
(CNT versus FRG). We found that the corresponding increasei
index size due to additional empty space within the postiogks
of SRF/CNT is 8%.

The other two hybrid policies of Wumpus that we examine, HSM
and HLM respectively, achieve 37% and 46% reduction in campa
ison to HIM. As we already explained in the previous sectié&M
keeps the postings of each term across a number of runs tied va
between 1 and 3 (one in-place run and two merge-based runs) du
ing the index construction. Furthermore, this number abe-
tween 1 and 7 in the case of HLM during the processing of GOV2.
The retrieval time of the short terms may increase signiflgas a
result.

We have been puzzled by the amount of time required by parsing
(Figure 4). In order to explain this behavior, we recordedés of
disk transfer activity during our experiments. From theés we
found out that, every time parsing reads new documents for pr
cessing, it causes substantial write activity with tens efjabytes
to the device where we maintain the index. Normally, parsing
should only create read activity at the device where we dtoee
document dataset and no write activity to any device. Howeke
index writes generated by Flushing only copy the postingthéo
page cache of the system. The system does the actual digkofrit

the postings later during parsing, when the reads have ao cliety
buffers and free space in order to fit the new documents in memo
before processing them. Such system behavior has beenlyalrea
documented in the literature [2].

In the rest of the current section, we examine the sensitofit
the index building time across the configuration parameiéthe
system using the SRG/FRG policy.

5.2.1 Posting Blockg,

The size of the posting blocB,, is a critical configuration pa-
rameter that specifies the amount of postings contained ¢h ea
range of short terms. Therefore, it directly affects the ammf
bytes transferred while we merge the short postings of mgmor
and disk. Figure 5(a) demonstrates this effect through rieuat
of bytes read and written during flushes. The less data thatag
during short term flushing, the lower total building time vohieve.
When we append long postings to disk there is almost no read in
volved. As a result, the block size does not change the amount
of transferred bytes but it may affect the required numbedlisgk
transfers. Overall, Figure 5(b) shows that an increasingkbtize
reduces the total flush time of long terms and raises that @t sh
terms. Our default block sizB,, = 8 M B balances the two trends
leading to low index building time.

In Figure 5(c) we break down the inverted file into a part that
contains postings, another that is empty space in blockiat s
terms, and a third that is empty space in blocks of long tefrhs.
large block size tends to increase substantially the enqagesin
blocks of long terms, leading to larger inverted file. Withr cie-
fault choice ofB, = 8 M B we get an index of 70GB, where about
41GB are actual data and the rest is empty space. Howewvge, lar
posting blocks lead to low disk access overhead when wevetri
long terms. For example, for a disk with 12ms access overhead
and 70MB/s sequential throughput, a block sizeBgf= 8M B is
anticipated to keep access overhead less than 10%.

5.2.2 Preference Factar,

The preference factor specifies how aggressively we flust lon
postings relatively to short ones. Term flushes cannot be ébn
ficiently unless a term has a sufficient number of postingsemm
ory. Otherwise, there is a high head movement cost for appgnd
or merging postings. Figure 6(a) makes it clear that we speore
time for short flushes if we assume equal cost for short and lon
flushes withF,, = 1. Instead, if we increask, beyond 8, the long
flushes dominate the 1/O cost of index building. Reads of-post
ings from disk are synchronous and directly affect the tbtald-
ing time, while postings writes are asynchronous and onttiglly
account for the building time.

In Figure 6(b) we also see that long terms are involved in #ash
much more often than short ones. We can explain this behbyior
the fact that the most popular long terms accumulate pcsfass
and become the first choice to flush into disk, while the flughin
cost of long terms is relatively lower. Should the frequeatterm
occurrence change significantly across the indexed dodismer
may have to adjust the choice Bf accordingly. In our experience,
a fixed small value around, = 3 keeps the index building time
low throughout the processing of the dataset.

5.2.3 Posting Memoryi,

The Posting Memory/,, specifies the memory space that we
reserve for temporary storage of postings. In Figure 6(e)neatice
that as we increasg/f,, from 0.5GB to 1GB, the build time drops
substantially. Further increase to 1.5GB reduces sligh#éybuild
time, while further increase to 2GB keeps build time the same
the rest of the experiments, we chose as default vidye= 1GB.
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Figure 5: (a) As the size of the posting block increases, thegstem transfers more data between memory and disk during meging.
(b) As the posting block becomes larger, there is a shift of #aflush time from long terms to short. SettingB,, = 8 M B strikes a good
balance between the flush time of the different term types. JdEmpty space in posting blocks increases with their size, nstly due to
dedicating separate blocks to each long term.

5.2.4 Flushed Memoryi; terabyte. We find that Selective Range Flush retrieves tstinqup

The Flushed Memony\/; parameter refers to the amount of lists of infrequent terms at amount of time that matches dribe
bytes that we flush to disk every time the posting memory gets f ~ fastest known methods, the Hybrid Immediate Merge (withigiar
(Figure 6(d)). We experimentally find that settind; = 200\ B, flushing and automatic threshold adjustment). The correding
as a small percentage (2%) of the posting memory (1GB), leads ~ retrieval time of Selective Range Flush for frequent tersreeiveral
low index building time. With)/; lower than 20MB, we don't cre-  factors lower in comparison to alternative methods. Furtioge,
ate sufficient free space for new postings to accumulate asti fl ~ the index building time of Selective Range Flush is 30% loimer

efficiently the next time memory gets full. In fact, from thipfan comparison to Hybrid Immediate Merge. We examine the sgnsit
term distribution it follows that most postings gather aew fire- ity of our method to various configuration parameters of gfstesn
quent terms [6]. Instead, with/; much larger than 20MB, we end ~ through extensive experimentation. S
up flushing small amounts of postings that incur high ovedreka- In-our future work, we plan to further investigate in the et
ing the head movement of the appends and the actual datéetrans ©Of the Proteus architecture alternative cost models fofltighing
of the merges. overhead, and consider using different block sizes for hioetsind
long terms. Additional directions for exploration inclutle an-
5.2.5 Other parameters alytical study of Selective Range Flush, and the automaljicst

We experimented with several other parameters againstwhic Ment of its configuration parameters according to the cheriae
the system showed limited sensitivity. In particular, taegmeter  tics of the indexed files and the underlying hardware.
term thresholdl’; refers to the space occupied by the posting list
of a term in the system. Its choice affects the categorigatb /. ACKNOWLEDGMENTS
terms into short or long and the subsequent flush method teat w  |n part supported by project Interstore of the Interreg IBeece-

use for their postings. We found that the default value= 1M/ B Italy EU Community Initiative program under contract nol@.005.
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